Functional Properties of Biodegradable Nanocomposites from Poly Lactic Acid (PLA)

نویسندگان

  • Saeed Dadashi
  • Seyed Mohammad Mousavi
  • Zahra Emam-Djomeh
  • Abdulrasoul Oromiehie
چکیده

Nanocomposite composed of organoclay )Cloisite 20A-C20A) and Poly lactic acid (PLA) was prepared by solvent casting method. Physical, mechanical, thermal, barrier and microstructure properties of the composite were studied. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images revealed that the diffraction peak of nanoclay shifted to lower angles and the d-spacing between the C20A layers increased. The formation of an intercalated structure with good compatibility and homogeneously dispersed nanoparticles was observed. Tensile strength (TS) and elastic modulus (E-M) of PLA/C20A nanocomposites increased significantly with clay concentrations, while the values of elongation (E) percentage decreased dramatically. Glass transition temperature (Tg) and degree of crystallinity (%) were determined by DSC (Differential Scanning Calorimetry). The presence of C20A provoked significant raise in both the Tg and the degree of crystallinity. The water vapor permeability (WVP) of the nanocomposites compared to pure PLA moved down by approximately 12-50% by adding 3-7 wt% C20A. An atomic force microscopy (AFM) was applied to evaluate the surface morphology and roughness of PLA films. Pure PLA possessed smoother surfaces and a lower roughness parameter (Sa). New composite based on PLA and C20A could prove to be an improved biopolymer with better functional properties for packaging and other applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Properties of Biodegradable Nanocomposites from Poly Lactic Acid (PLA)

Nanocomposite composed of organoclay(Cloisite 20A-C20A) and Poly lactic acid (PLA) was prepared by solvent casting method. Physical, mechanical, thermal, barrier and microstructure properties of the composite were studied. X-Ray diffraction (XRD) patterns and scannin...

متن کامل

Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films

Objective(s): Nowadays, tendency to use green materials can reduce environmental pollution and plastic waste. Poly (lactic Acid) PLA is one of the natural biodegradable polymers mainly used in the production of bioplastics for packaging which is made of non-toxic compounds and is easily biodegradable. In this research, the effect of 1, 3 and 5% nanocomposite zinc oxide on the morphological, mec...

متن کامل

Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges

Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...

متن کامل

Novel silicon dioxide -based nanocomposites as an antimicrobial in poly (lactic acid) nanocomposites films

Objective(s): Due to nanocomposites antimicrobial properties, one of the most extensive usages of nano-products is in packing industry. Thus, the production of packages with nanotechnology can effectively prevent against a variety of microorganisms. In this study, the silicon dioxide nanoparticles the poly (lactic acid) PLA films on antimicrobial and permeability was investigated. Methods...

متن کامل

Synthesis and characterization of nHA-PLA composite coating on stainless steel by dip-coating process for biomedical applications

316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014